The zeta function of $H \times \mathbb{Z}^{2}$ counting all subrings

1 Presentation

$H \times \mathbb{Z}^{2}$ has presentation

$$
\langle x, y, z, a, b \mid[x, y]=z\rangle .
$$

$H \times \mathbb{Z}^{2}$ has nilpotency class 2.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{H \times \mathbb{Z}^{2}, p}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(2 s-4) \zeta_{p}(2 s-5) \\
& \times \zeta_{p}(3 s-5)^{-1}
\end{aligned}
$$

$\zeta_{H \times \mathbb{Z}^{2}}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{H \times \mathbb{Z}^{2}, p}(s)\right|_{p \rightarrow p^{-1}}=-p^{10-5 s} \zeta_{H \times \mathbb{Z}^{2}, p}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{H \times \mathbb{Z}^{2}}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{H \times \mathbb{Z}^{2}}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

